Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 20(2): e1011194, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38422160

RESUMO

Misfolded proteins are usually refolded to their functional conformations or degraded by quality control mechanisms. When misfolded proteins evade quality control, they can be sequestered to specific sites within cells to prevent the potential dysfunction and toxicity that arises from protein aggregation. Btn2 and Hsp42 are compartment-specific sequestrases that play key roles in the assembly of these deposition sites. Their exact intracellular functions and substrates are not well defined, particularly since heat stress sensitivity is not observed in deletion mutants. We show here that Btn2 and Hsp42 are required for tolerance to oxidative stress conditions induced by exposure to hydrogen peroxide. Btn2 and Hsp42 act to sequester oxidized proteins into defined PQC sites following ROS exposure and their absence leads to an accumulation of protein aggregates. The toxicity of protein aggregate accumulation causes oxidant sensitivity in btn2 hsp42 sequestrase mutants since overexpression of the Hsp104 disaggregase rescues oxidant tolerance. We have identified the Sup35 translation termination factor as an in vivo sequestrase substrate and show that Btn2 and Hsp42 act to suppress oxidant-induced formation of the yeast [PSI+] prion, which is the amyloid form of Sup35. [PSI+] prion formation in sequestrase mutants does not require IPOD (insoluble protein deposit) localization which is the site where amyloids are thought to undergo fragmentation and seeding to propagate their heritable prion form. Instead, both amorphous and amyloid Sup35 aggregates are increased in btn2 hsp42 mutants consistent with the idea that prion formation occurs at multiple intracellular sites during oxidative stress conditions in the absence of sequestrase activity. Taken together, our data identify protein sequestration as a key antioxidant defence mechanism that functions to mitigate the damaging consequences of protein oxidation-induced aggregation.


Assuntos
Príons , Proteínas de Saccharomyces cerevisiae , Agregados Proteicos/genética , Príons/genética , Príons/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Estresse Oxidativo/genética , Amiloide/metabolismo , Oxidantes/farmacologia , Oxidantes/metabolismo , Fatores de Terminação de Peptídeos/genética , Fatores de Terminação de Peptídeos/metabolismo
2.
Antioxidants (Basel) ; 12(2)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36829961

RESUMO

Prions are self-propagating, misfolded forms of proteins associated with various neurodegenerative diseases in mammals and heritable traits in yeast. How prions form spontaneously into infectious amyloid-like structures without underlying genetic changes is poorly understood. Previous studies have suggested that methionine oxidation may underlie the switch from a soluble protein to the prion form. In this current study, we have examined the role of methionine sulfoxide reductases (MXRs) in protecting against de novo formation of the yeast [PSI+] prion, which is the amyloid form of the Sup35 translation termination factor. We show that [PSI+] formation is increased during normal and oxidative stress conditions in mutants lacking either one of the yeast MXRs (Mxr1, Mxr2), which protect against methionine oxidation by reducing the two epimers of methionine-S-sulfoxide. We have identified a methionine residue (Met124) in Sup35 that is important for prion formation, confirming that direct Sup35 oxidation causes [PSI+] prion formation. [PSI+] formation was less pronounced in mutants simultaneously lacking both MXR isoenzymes, and we show that the morphology and biophysical properties of protein aggregates are altered in this mutant. Taken together, our data indicate that methionine oxidation triggers spontaneous [PSI+] prion formation, which can be alleviated by methionine sulfoxide reductases.

3.
Front Cell Infect Microbiol ; 12: 907519, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35982778

RESUMO

Damage to the lung epithelium is a unifying feature of disease caused by the saprophytic fungus Aspergillus fumigatus. However, the mechanistic basis and the regulatory control of such damage is poorly characterized. Previous studies have identified A. fumigatus mediated pathogenesis as occurring at early (≤ 16 hours) or late (>16 hours) phases of the fungal interaction with epithelial cells, and respectively involve direct contact with the host cell or the action of soluble factors produced by mature fungal hyphae. Both early and late phases of epithelial damage have been shown to be subject to genetic regulation by the pH-responsive transcription factor PacC. This study sought to determine whether other transcriptional regulators play a role in modulating epithelial damage. In particular, whether the early and late phases of epithelial damage are governed by same or distinct regulators. Furthermore, whether processes such as spore uptake and hyphal adhesion, that have previously been documented to promote epithelial damage, are governed by the same cohorts of epithelial regulators. Using 479 strains from the recently constructed library of A. fumigatus transcription factor null mutants, two high-throughput screens assessing epithelial cell detachment and epithelial cell lysis were conducted. A total of 17 transcription factor mutants were found to exhibit reproducible deficits in epithelial damage causation. Of these, 10 mutants were defective in causing early phase damage via epithelial detachment and 8 mutants were defective in causing late phase damage via epithelial lysis. Remarkably only one transcription factor, PacC, was required for causation of both phases of epithelial damage. The 17 mutants exhibited varied and often unique phenotypic profiles with respect to fitness, epithelial adhesion, cell wall defects, and rates of spore uptake by epithelial cells. Strikingly, 9 out of 10 mutants deficient in causing early phase damage also exhibited reduced rates of hyphal extension, and culture supernatants of 7 out of 8 mutants deficient in late phase damage were significantly less cytotoxic. Our study delivers the first high-level overview of A. fumigatus regulatory genes governing lung epithelial damage, suggesting highly coordinated genetic orchestration of host-damaging activities that govern epithelial damage in both space and time.


Assuntos
Aspergilose , Aspergillus fumigatus , Pulmão , Fatores de Transcrição , Aspergilose/patologia , Aspergillus fumigatus/genética , Aspergillus fumigatus/metabolismo , Parede Celular/metabolismo , Epitélio/microbiologia , Epitélio/patologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Humanos , Hifas/genética , Hifas/metabolismo , Pulmão/microbiologia , Pulmão/patologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
J Biol Chem ; 296: 100690, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33894203

RESUMO

Protein aggregation is the abnormal association of misfolded proteins into larger, often insoluble structures that can be toxic during aging and in protein aggregation-associated diseases. Previous research has established a role for the cytosolic Tsa1 peroxiredoxin in responding to protein misfolding stress. Tsa1 is also known to downregulate the cAMP/protein kinase A (PKA) pathway as part of the response to hydrogen peroxide stress. However, whether the cAMP/PKA pathway is involved in protein misfolding stress is not known. Using transcriptomics, we examined the response to protein misfolding stress and found upregulation of numerous stress gene functions and downregulation of many genes related to protein synthesis and other growth-related processes consistent with the well-characterized environmental stress response. The scope of the transcriptional response is largely similar in wild-type and tsa1 mutant strains, but the magnitude is dampened in the strain lacking Tsa1. We identified a direct protein interaction between Tsa1 and the Bcy1 regulatory subunit of PKA that is present under normal growth conditions and explains the observed differences in gene expression profiles. This interaction is increased in a redox-dependent manner in response to nascent protein misfolding, via Tsa1-mediated oxidation of Bcy1. Oxidation of Bcy1 causes a reduction in cAMP binding by Bcy1, which dampens PKA pathway activity, leading to a targeted reprogramming of gene expression. Redox regulation of the regulatory subunit of PKA provides a mechanism to mitigate the toxic consequences of protein misfolding stress that is distinct to stress caused by exogenous sources of reactive oxygen species.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Dobramento de Proteína , Estresse Fisiológico , Perfilação da Expressão Gênica , Mutação , Agregados Proteicos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia
5.
Mol Biol Evol ; 33(7): 1679-96, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26929245

RESUMO

The nonrandom gene organization in eukaryotes plays a significant role in genome evolution and function. Chromosomal structural changes impact meiotic fitness and, in several organisms, are associated with speciation and rapid adaptation to different environments. Small sized chromosomal inversions, encompassing few genes, are pervasive in Saccharomyces "sensu stricto" species, while larger inversions are less common in yeasts compared with higher eukaryotes. To explore the effect of gene order on phenotype, reproductive isolation, and gene expression, we engineered 16 Saccharomyces cerevisiae strains carrying all possible paracentric and pericentric inversions between Ty1 elements, a natural substrate for rearrangements. We found that 4 inversions were lethal, while the other 12 did not show any fitness advantage or disadvantage in rich and minimal media. At meiosis, only a weak negative correlation with fitness was seen with the size of the inverted region. However, significantly lower fertility was seen in heterozygote invertant strains carrying recombination hotspots within the breakpoints. Altered transcription was observed throughout the genome rather than being overrepresented within the inversions. In spite of the large difference in gene expression in the inverted strains, mitotic fitness was not impaired in the majority of the 94 conditions tested, indicating that the robustness of the expression network buffers the deleterious effects of structural changes in several environments. Overall, our results support the notion that transcriptional changes may compensate for Ty-mediated rearrangements resulting in the maintenance of a constant phenotype, and suggest that large inversions in yeast are unlikely to be a selectable trait during vegetative growth.


Assuntos
Inversão Cromossômica , Ordem dos Genes , Saccharomyces cerevisiae/genética , Evolução Biológica , Estruturas Cromossômicas , Cromossomos Fúngicos , Evolução Molecular , Expressão Gênica , Rearranjo Gênico , Genoma , Meiose , Fenótipo , Saccharomyces cerevisiae/metabolismo
6.
Antioxid Redox Signal ; 18(4): 376-85, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22770501

RESUMO

AIMS: Yeast, like other eukaryotes, contains a complete mitochondrial thioredoxin system comprising a thioredoxin (Trx3) and a thioredoxin reductase (Trr2). Mitochondria are a main source of reactive oxygen species (ROS) in eukaryotic organisms, and this study investigates the role of Trx3 in regulating cell death during oxidative stress conditions. RESULTS: We have previously shown that the redox state of mitochondrial Trx3 is buffered by the glutathione redox couple such that oxidized mitochondrial Trx3 only accumulates in mutants simultaneously lacking Trr2 and a glutathione reductase (Glr1). We show here that the redox state of mitochondrial Trx3 is important for yeast growth and its oxidation in a glr1 trr2 mutant induces programmed cell death. Apoptosis is dependent on the Yca1 metacaspase, since loss of YCA1 abrogates cell death induced by oxidized Trx3. Our data also indicate a role for a mitochondrial 1-cysteine (Cys) peroxiredoxin (Prx1) in the oxidation of Trx3, since Trx3 does not become oxidized in glr1 trr2 mutants or in a wild-type strain exposed to hydrogen peroxide in the absence of PRX1. INNOVATION: This study provides evidence that the redox state of a mitochondrial thioredoxin regulates yeast apoptosis in response to oxidative stress conditions. Moreover, the results identify a signaling pathway, where the thioredoxin system functions in both antioxidant defense and in controlling cell death. CONCLUSIONS: Mitochondrial Prx1 functions as a redox signaling molecule that oxidizes Trx3 and promotes apoptosis. This would mean that under conditions where Prx1 cannot detoxify mitochondrial ROS, it induces cell death to remove the affected cells.


Assuntos
Apoptose , Mitocôndrias/enzimologia , Peroxidases/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/enzimologia , Tiorredoxinas/metabolismo , Sequência de Aminoácidos , Caspases/metabolismo , Domínio Catalítico , Sequência Conservada , Técnicas de Inativação de Genes , Glutationa/metabolismo , Peróxido de Hidrogênio/farmacologia , Oxirredução , Estresse Oxidativo , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Tiorredoxina Redutase 2/genética , Tiorredoxinas/química , Tiorredoxinas/genética
7.
Yeast ; 27(9): 765-75, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20641014

RESUMO

In this work, we developed molecular tools used in standard laboratory yeast strains, such as the cre-loxP system, so that they can be used with natural and industrial prototrophic yeast species. We constructed a new generation of dominant cassettes, with mutated loxP sites (loxLE and lox2272) and selectable drug markers, to create heterothallic strains and auxotrophic mutants without incurring in the risk of generating chromosomal rearrangements. We have shown that our newly developed loxLE-hphNT1-loxRE and lox2272-natNT2-lox2272 gene-disruption cassettes can be present in the yeast genome together with the widely used loxP-marker gene-loxP cassettes without any recombination between the lox sequences. Moreover, we also developed a new phleomycin-resistant Cre-expressing vector (to excise multiple markers simultaneously) and two new standard loxP deletion cassettes containing hygromicin B and cloNAT as selecatable markers. To validate these cassettes, we created heterothallic auxotrophic S. cerevisiae strains, without the risk of incurring gross chromosomal rearrangements, and we showed an example of a fitness study of intraspecific hybrids deriving from parents with different adaptations to carbon-limited resources.


Assuntos
Técnicas de Inativação de Genes/métodos , Genética Microbiana/métodos , Mutagênese Insercional/métodos , Micologia/métodos , Saccharomyces cerevisiae/genética , DNA Fúngico/química , DNA Fúngico/genética , Vetores Genéticos , Integrases , Dados de Sequência Molecular , Análise de Sequência de DNA , Deleção de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...